
Neural Network Development Tool

Evaluation version 1.1                Björn Saxén 1995

General
pattern file
setup file
output file
log file
test file
general settings
command line arguments
graphical presentation of outputs
network state
log table
graphical presentation of training progress

MLP networks
MLP network configuration setup
MLP training setup

Help on the actual topic is achieved by pressing F1 at any time in NNDT

The file MANUAL.ZIP contains a user's guide for NNDT in PostScript format.



NNDT - Neural Network Development Tool

The NNDT software is as a tool for neural network training.    The user interface is developed 
with MS Visual Basic 3.0 professional edition. DLL routines (written in C) are used for most of 
the mathematics. The program can be run on a personal computer with MS Windows, version 
3.1.

Evaluation version
This evaluation version of NNDT may be used free of charge for personal and educational 
use. The software certainly contains limitations and bugs, but is still a working version 
which has been developed for over one year. Comments, bug reports and suggestions for 
improvements can be sent by e-mail to:

bjsaxen@abo.fi

Remember, this program comes free but with no guarantee!

Features and methods
NNDT includes a routine for graphical presentation of the output signals, residuals, 
weights and node activations during run. Network weights and node activations are easily 
examined in tables and the weights can be modified by the user.
The network algorithms implemented are of the so called supervised type. So far, only 
algorithms for MLP networks of feed-forward and recurrent type are included. The training
requires a set of input signals and corresponding output signals, stored in a file referred to 
as pattern file. This is the only file the user must provide. 
Optionally, parameters defining the pattern file columns, network size and network 
configuration may be stored in a file referred to as setup file. When saved after a network 
training, the setup file also includes the achieved network weights. The use of setup files 
makes the interactive work faster.
A test file can be used to evaluate the generalisation performance during training.
The user can select the option output file to get the result from each time step saved for 
later use.
NNDT is developed mainly for interactive use. However, the program can be run in a non-
interactive "batch" mode when started with appropriate command line arguments. Several 
instances of NNDT can be run simultaneously.



Pattern file

The pattern file supplied by the user holds input signals and corresponding output signals for the 
supervised learning. All input and output signals for one pattern should be written on the same 
line in the file. Each line should end with a carriage return. The pattern file is chosen in the 
pattern file setup window (accessed from the setup menu) where also the locations of the 
columns for input and output signals are specified as well as the number of header lines to be 
skipped in the beginning of the pattern file. All information about the pattern file is stored in the 
setup file. 
The numbers (columns) on one line in the pattern file may be separated by spaces and/or tabs. A 
pattern file can e.g. be created with MS Excel. In Excel, save the worksheet containing the 
patterns as a text file.
It should be noted that data pre-treatment, specified in the MLP setup window, may result in 
training patterns different from those in the pattern file.

Demo files
Two pattern files for demonstration are delivered with the NNDT installation files. The file 
DEMO1.DAT consists of 64 patterns of x, sin(x), cos(x) and tan(x), where x goes from 0 to
approx. 2p. Already a feed-forward network of moderate size should be able to describe 
sin(x) and cos(x) as functions of x, whereas tan(x) may be a more complicated task. A 
recurrent network without inputs (DEMO1.MLP) is capable of finding the circle described 
by sin(x) and cos(x).
The file DEMO2.DAT consists of 600 patterns of x(t), x(t-6), x(t-12), x(t-18) and x(t+85) 
where x is a chaotic time series given by a Mackey-Glass differential equation. The 
prediction of x(t+85) may require quite large network sizes.
Setup files for the demo data files are given (DEMO1.MLP, DEMO1B.MLP, 
DEMO2.MLP). Start by loading the demo setup file and then make the configuration 
changes you wish. DEMO1.MLP is loaded automatically the first time you run NNDT after
installation. 



Setup file

The setup file is optional, and it is chosen from the file menu. A setup file makes work faster 
when similar runs are carried out subsequently. The file holds all information required about 
network size and configuration. When created based on a trained network, the file also contains 
the network weights. 
The setup file also holds information about the pattern file name and the location of input and 
output columns in this file.
When NNDT is started, the latest setup file selected (in previous run) is automatically read. 
The setup files DEMO1.MLP, DEMO1B.MLP and DEMO2.MLP delivered with NNDT are used
for the demo examples.



Output file

The output file is optional, and it is normally used when further analysis or graphical 
presentation of the data is needed. The output file is created by feeding the training patterns to 
the network immediately after training (or evaluation), so the output file must be selected before 
training is started.
The output file name and the variables to be written to the file are specified in the output file 
setup window, accessed from the setup menu.    



Log file

The log file is optional and holds the same information as the log table, but the log file is 
especially suited for non-interactive runs.
The log file name and the variables to be written to the file are chosen in the log file setup 
window, accessed from the setup menu. A new line is appended to the log file after each 
iteration, thus, the log file must be selected before training is started.



Test file

The test file is optional, and it is chosen in the test file setup window, accessed from the setup 
menu. The test file option enables evaluation of the generalisation properties of the network 
throughout training by means of observations which are not included in the training data. The 
test data is fed through the network after each iteration in the training and the rms error for the 
test patterns are shown. The result is saved in the log table and a graphical presentation is given 
in the training progress window. The user can examine node activations for test data in the 
network state window and in the graph window.
The observations in the test file must written in analogy to the pattern file, i.e. the columns for 
the variables should be same as in the pattern file. The test file observations are treated similarly 
to the training data, i.e., same parameters for scaling of pattern file values and data pre-filtering 
are used. However, a separate number of header lines can be specified for the test file, and, the 
entire test file is used even if the number of training patterns is limited.



General settings

The following switches appear in the main window. Some of them may only be available for 
certain network types.
Single step mode

Checking this box forces the training to be paused at frequent intervals.
Train net

If this box is not checked, no training occurs and the network is only evaluated with the 
data in the pattern file.

Network type (setup menu)
The network type is selected in the setup menu

Multitasking (options menu)
Large networks may require considerable training times. The grade of multitasking, i.e. 
how often NNDT checks if other events are in the queue, is set by the multitasking switch. 
Normally, full multitasking should be used. Limiting the grade of multitasking makes the 
training a little faster but may slow down the system quite a bit. 



Command line arguments

NNDT can be started with optional command line arguments which enable non-interactive runs. 
The syntax for the command line is:
nndt [setup_file] [/st] [/sa] [/ex]
All parameters in brackets are optional and may be given in any order.
- setup_file is the name (including path if it is not the default) of the setup file
- /st specifies that the program (training) is started immediately (so the user does not have to 

press the "start" button)
- /sa specifies that the setup (including weights) is saved to the setup file automatically after 

finished training 
- /ex specifies that the program is exited after finished training (and possible automatical setup

saving)

When an output file and/or a log file (specified in the setup file) are used, a non-interactive run 
can be analysed later.
Several instances of NNDT can run simultaneously.



Pattern file setup window

In this window, the user can specify the name of the pattern file, the number of input and output 
signals and the location of the columns in the file, as well as the number of header lines to be 
skipped in the beginning of the file. (At least one output target signal is required, but recurrent 
networks do not necessarily need input signals.)
Scale factors can be specified for inputs and outputs. Input signals are scaled before they are fed 
to the network and the desired outputs signals are scaled before compared to network outputs. 
Always reread file

If this box is checked, the pattern file (and the test file, if any) is always read before 
network training or evaluation. This options is needed if the user makes changes in the 
pattern file (or test file) while NNDT is loaded.



Output file setup window

In the output file setup window, the user can specify if an output file should to be used, select the
file name and select the variables to be written to the output file. 
Variables that can be written to the output file are input signals, desired output signals, network 
output signals and internal node activations.    



Log file setup window

In the log file setup window, the user can specify if an log file should to be used, select the file 
name and select the variables to be written to the output file. 
The variables to be written to the file are specified by the user, possible choices are 
- real time (from computer´s clock)
- iteration number
- SSQ error
- rms error
- rms error for test set (if any)
- Marquardt parameter



Test file setup window

In this window, the user specifies if a test file shall be used and the name of the file. The number 
of header lines to be ignored in the beginning of the file is also specified. Scale factors specified 
for the pattern file (in pattern file setup window) and parameters for pre-treatment of training 
data (given in the MLP setup window) are used also for the test file. However, the entire test file 
(except the header lines) is always used, even if the number of training patterns is limited. 
A single file may be used both as pattern file and test file. By specifying a maximum number of 
patterns to be formed before training (in the MLP setup window) only the first part of the file is 
used for the training patterns. The rest of the file is used for test patterns by specifying an 
appropriate number of header lines for the test file.
 



Graphical presentation

In the performance graph window, accessed from the show menu, the network activations, 
weights etc. are illustrated graphically. 
This window can be kept open during network training.

Options menu
Copy graph - The graph can be copied to Windows clipboard as a metafile.    

Plot menu
Variables - Choose between: 

* Outputs (network and desired) against pattern index
* Residuals against pattern index
* Weights
* Special: one or several node activations can be plotted against any node activation 

or against pattern index. See plot specification.
Plot density - Setting a higher number gives faster but less accurate plots.
Train data / Test data - Choose if train or test data shall be used for the plot (does not affect 
plot of weights)

Redraw interval
The redraw interval specifies the number of iterations between graph updating. The same 
update interval is used for the training progress plot



Plot specification

In the window for specification of plot variables, accessed from the plot/variables menu in the 
graph window, the user assigns variables for both axis on the plot. One or several node 
activations can be plotted against any node activation or against pattern index.
A variable is selected by simply dragging from the picture of network nodes and dropping on the 
desired axis. The x-axis can hold only one variable, whereas the y-axis can hold several. A 
variable on the y-axis is replaced when a new variable is dropped on it. To add y-axis variables, 
drop them on the "free region" of the axis. Variables are removed from the y-axis by dragging 
them to refuse bin.



Network state window 

The network state window, which is accessed from the show menu, shows internal states (node 
activations) and values of the weights in the network. Weights (and initial states) can be 
initialised by a random number generator within the ranges specified in the parameter 
initialisation window.
This window can be kept open during network training.

For MLP networks, the network state window is used for: 

Examination and modification of weights
Network weights and initial values for the fictitious input nodes can be viewed at any time,
also during iteration. The values can also be changed, but not during iteration. The 
clipboard in Windows is used for editing which enables import to, or export from, other 
applications. 
The first lines in the weight table show the weights for the connections to the first hidden 
layer (if any) and below are shown the weights to any upper hidden layers and finally the 
weights to the output layer. Each line contains the weights for all connections leading to 
one node. The first element (column) is the bias. 
 
Examination of node activations
Node activations can be viewed during and after training. The pattern number for which 
the activations are to be shown is given by the user. The activations are updated after each 
iteration in the training. In the options menu, the user can choose between train data and 
test data.



Parameter initialisation window

A network training procedure is normally started from randomly assigned values for network 
weights and bias terms (and initial states for recurrent networks). This assignment is made in the 
parameter initialisation window accessed from the options menu in the network state window. 
The user can initialise the weights leading to each layer (as well as the initial states) separately 
and give separate initialisation ranges. The seed for the random number generator is also given 
by the user; subsequent initialisations give identical weights if the seed is kept constant. 
The new parameters are immediately shown in the network state window.



Log table window

After each iteration in training, the time (from the computer's clock), iteration number, SSQ, rms 
error and the Marquardt (lambda) parameter are saved in a list. If a test file is used, the rms error 
for the test set is also written to the list. The list can be analysed in the log table window, 
accessed from the show menu. A log file can also be used. The rms errors for the training and the
test data are plotted vs. iteration index in the training progress window.
This window can be kept open during network training.



Plot of training progress

The rms error for the training patterns and the test patterns (if any) are plotted vs. iteration index 
in the training progress window accessed from the show menu.
This window can be kept open during network training.
The redraw interval specifies the number of iterations between graph updating. The same 
update interval is used for the performance graph
Options menu

Copy graph - The graph can be copied to Windows clipboard as a metafile.    



Multi-Layer Perceptron (MLP) Networks

The MLP algorithm implements multi-layer perceptron networks. Both feed-forward networks 
and partially recurrent networks with fictitious input and output nodes are implemented. Several 
alternatives for the node activation function are available. The network training is carried out 
using the Levenberg-Marquardt optimisation method. 
Network size and configuration are set in the MLP setup window, accessed from the setup menu
or by double-clicking the network picture.

Structure of the MLP networks
The network has an input layer, an output layer and may have internal hidden layers. Each 
layer has a number of nodes, also called neurons or elements. In the networks, the nodes in 
the input layer only distribute the input signals to the network. Each node in the hidden and
output layers receive as input a weighted sum of the outputs, also called activations, of the 
nodes in the layer below. Each node in the hidden and output layers also has a bias term, 
which can be treated as a weight to a constant term with unity value. The weights and bias 
terms are parameters in the network training (optimisation). 
Each node in the hidden and output layers has an activation function, which transfers the 
node input to an output signal. Several alternatives are available for the activation function,
see MLP network configuration.

Limitations
The following limitations are set for the network size in NNDT:
- max 3 hidden layers
- max 15 nodes / layer
- max 200 parameters (weights, biases, initial states)



Network training, Levenberg-Marquardt method

The MLP networks are trained with the Levenberg-Marquardt method. The method minimises 
the squares of the residuals (=differences between desired outputs and network outputs) by 
modifying the network weights. The search direction is formed as an interpolation between the 
directions given by Gauss-Newton and the steepest descent methods. The l (lambda) parameter, 
also displayed during run, determines the weighting of the two search methods. Steepest descent 
is dominating when l is high, whereas Gauss-Newton is dominating when l is low (near zero).  
During and after training, the sum of the squared residuals (SSQ) and the rms error are shown in 
the main window. The rms error is given by 

where n is the number of residuals.



MLP setup

The specification of the MLP networks are divided into a network configuration part and a 
training part. The specification is made in the network setup window, accessed from the setup 
menu. 
MLP network configuration setup
MLP training setup



MLP network configuration setup

In additions to the configuration options specified below, the user can specify equal and/or 
constant weights. The network weights are assigned in the network state window.

Number of nodes in each layer
The number of nodes can be set separately for each hidden layer. If the number of nodes is
set to zero (-) for a layer, the layer will disappear. Note that the number of input and output 
nodes is specified in the pattern file setup window or by specifying recurrent connections.

Activation functions
For the nodes in each hidden layer and the output layer, different activation functions can 
be specified. Available node activation functions are:
-the (standard) sigmoid from 0 to 1

,
-the symmetric logarithmoid

,
-the linear (identity) function

,
-the sigmoid from -1 to 1

In the formulas above, y is the node output and x is the total node input.

Feed-back connections
Recurrent links (feed-back links) can be specified from output nodes to fictitious input 
nodes. The links have a weight of unity and they are delayed with one sampling, i.e., the 
fictitious input nodes obtain the activations that the output nodes in question had at 
previous pattern. The links can be used to feed back true network output nodes, but also 
fictitious output nodes, that are in fact internal network nodes situated in the output layer. 
For each feed-back link specified, an additional fictitious input node is created. The initial 
state of the fictitious input nodes for each period are open parameters in the training (see 
MLP advanced setup)



MLP equal & constant weights

For certain problems, there may be a need to keep some of the network weights constant during 
training, or, keep the values of some weights equal. For a weight which is specified as constant, 
the initial value (read from setup file, or given by the user in network state window) is used 
throughout training. 
The numbers (indexes) for the network weights are shown in a table (matrix) arranged similarly 
to the table in the network state window. 
To specify that a weight shall be kept constant:

1. Select the weight number in the first dropdown list, or, click in the table.
2. Select "constant" in the second dropdown list.

To specify that two (or more) weights shall have equal values:
1. Select one of the weights in the first dropdown list, or, click in the table.
2. Select the other weight in the second dropdown list.
If more than two weights shall be kept equal:
3. Select next weight in the first dropdown list, or, click in the table.
4. In the second dropdown list, select the same weight as in step 2.

The specified constants and equalities are shown in the table.



MLP training setup

In addition to the parameters listed below, more specialised options are chosen in MLP advanced 
setup window.

Data pre-treatment
If the patterns are to be used just like they are written in the pattern file, make sure that the 
box Filter pattern data is not checked.
A sliding window mean value filter is available, which filters the input and output signals 
in the pattern file. The user specifies a number of old values in mean filter, the filter is 
switched off by typing a zero in the box. 
To reduce the size of the training data, each training pattern may be formed only after a 
given number of lines in the pattern file has been read (and filtered). The number is given 
as number of samples between pattern formation. Typing 1 in this box means that all 
lines in the pattern file are treated as different patterns. 
The number of patterns to be formed before training parameter can be used to utilise 
only part of the pattern file. 

Optimisation task
As alternatives to standard network training, where all network weights are parameters, 
gain factors for inputs and/or outputs can be specified to be the parameters in the 
optimisation task.

Maximum number of iterations
The maximum number of iterations specifies an upper limit for the number of steps in 
the training.



MLP advanced setup

Analytical derivatives
The Levenberg-Marquardt training method uses the derivatives of the residuals with 
respect to each weight in its search for optimal weight values. The derivatives are either 
obtained using analytical expressions or calculated numerically (as the change in the 
residuals for a small change in the weights). Analytical derivatives are more accurate and 
should normally give better results.

Limit parameter values
An upper and lower limit for the parameters (weights, biases and initial states) can be 
specified. 

Limit relative changes
The maximum allowed relative change per iteration can also be specified. The step 
suggested by the training method is restricted if any parameter would change more than the
maximum percentage specified.

Penalty factor
A penalty term can be specified to keep the weights at reasonable sizes without specifying 
definite limits. The penalty term is treated as an additional residual which is minimised 
along with the output residuals in the training. The term is given by 
, 

where g is the factor specified by the user and w denotes the network parameters (weights, 
biases and initial states).

Number of separate periods in training data
For network with feed-back links (i.e. recurrent networks), the initial states of the fictitious 
input nodes are open parameters, just like the network weights. To enable the use of 
training data consisting of several different parts, the number of separate periods and the 
locations of the first patterns in the periods can be specified. When a new period starts, 
the fictitious input nodes are set to their initial activations. The initial states may be either 
equal for all periods or specific for each. Note that the start of each period is given as the 
pattern number in training. Depending on the data pre-treatment chosen, this number does 
not necessarily equal the pattern number in the pattern data file.

Teacher forcing



For networks with feed-back links from true output nodes, teacher forcing may enhance the
training performance. Teacher forcing means that, instead of network outputs, the desired 
output signals are fed back to the fictitious input nodes. The user specifies the interval 
between teacher forcing actions; typing 1 in the box means that desired (target) output 
values are fed back at each pattern. Teacher forcing is never used for the first pattern in a 
period.




